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Abstract

We set out a logic for reasoning about multilevel security
of probabilistic systems. This logic includes modalities
for time, knowledge, and probability. In earlier work
we gave syntactic de�nitions of multilevel security and
showed that their semantic interpretations are equiva-
lent to independently motivated information-theoretic
de�nitions. This paper builds on that earlier work
in two ways. First, it substantially recasts the lan-
guage and model of computation into the more standard
Halpern-Tuttle framework for reasoning about knowl-
edge and probability. Second, it brings together two
distinct characterizations of security from that work.
One was equivalent to the information-theoretic secu-
rity criterion for a system to be free of covert channels
but was di�cult to prove. The other was a veri�ca-
tion condition that implied the �rst; it was more eas-
ily provable but was too strong. This paper presents
a characterization that is syntactically very similar to
our previous veri�cation condition but is proven to be
semantically equivalent to the security criterion. The
new characterization also means that our security crite-
rion is expressible in a simpler logic and model.

1 Introduction

Multilevel security is the aspect of computer security
concerned with protecting information that is classi-
�ed with respect to a multilevel hierarchy (e.g., UN-
CLASSIFIED, SECRET, TOP SECRET). A probabilis-
tic system is a hardware or software system that makes
probabilistic choices (e.g., by consulting a random num-
ber generator) during its execution. Such probabilistic
choices are useful in a multilevel security context for
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introducing noise to reduce the rate of (or eliminate) il-
licit communication between processes at di�erent clas-
si�cation levels. In this paper, we are concerned with
de�nitions of perfect (information-theoretic) multilevel
security in the sense that the de�nitions rule out all il-
licit communication without relying on any complexity-
theoretic assumptions. That is, our model allows the
system penetrators to have unlimited computational
power and yet, our de�nitions are su�cient to ensure
that there can be no illicit communication.

The motivation for reasoning about the probabilistic be-
havior of systems has appeared in examples and dis-
cussions of many authors (cf. [Bro91, Gra92, MR88,
McC88, McL90, WJ90]). Essentially, the motivation
is that it is possible for a probabilistic system to sat-
isfy many existing de�nitions of security (e.g., Suther-
land's Nondeducibility [Sut86], McCullough's Restric-
tiveness [McC90], etc.) and still contain probabilistic
covert channels.

A primary contribution of our earlier work [GS92] was
the uni�cation of the logical approach to multilevel secu-
rity developed by Glasgow, MacEwen, and Panangaden
[GMP90] and Bieber and Cuppens [BC92] with the work
on security of probabilistic systems done by McLean
[McL90], Browne [Bro89], and Gray [Gra92]. In partic-
ular, we proved that the semantic interpretation of a log-
ical formula due to Glasgow et al. is equivalent to Gray's
Probabilistic Noninterference (which is itself equivalent
to Browne's Stochastic Non-Interference). We also gave
a veri�cation condition (in our logic) and proved that
it is equivalent to Gray's Applied Flow Model (which is
closely related to McLean's Flow Model).

This paper builds on that earlier work in two funda-
mental ways. First, we present a new logic and corre-
sponding semantics that is designed to substantially re-
cast our previous work into the more standard Halpern-
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Tuttle framework for reasoning about probability and
knowledge in computing systems [HT93]. Second, we
give a logical characterization of security that does the
job of a security de�nition while remaining very similar
in form to the veri�cation condition. It also gives a se-
curity de�nition in terms of simpler and more standard
modalities than the de�nitions in [GS92].

The remainder of the paper is organized as follows. In
x2 we set out our model of computation. In xx3 and 4,
we set out the syntax and semantics of our logic. In x5
we state our de�nition of security and prove that it is
equivalent to Probabilistic Noninterference. Finally, in
x6, we give some conclusions of this work.

2 System Model

In this section, we describe our system model. This is
the model by which we will (in x4) give semantics to
our logic. First, we describe the general system model,
which is taken from Halpern and Tuttle [HT93]. Then,
we tailor the model to our needs by (in Halpern and Tut-
tle's terminology) choosing the \adversaries". Finally,
we impose some additional structure on the model, re-
sulting in our application-speci�c model.

2.1 General System Model

In this subsection we review the general system model
of Halpern and Tuttle. A complete description of their
model can be found in [HT93].

We have a set of agents, P1; P2; : : : ; Pn, each with its
own local state. The global state is an n-tuple of the
local agents' states. A run of the system is a mapping
of times to global states. We assume that time is dis-
crete because we are dealing with security at the digital
level of the system. We are not, for example, address-
ing security issues such as analog channels in hardware.
Therefore, as in [HT93], we will assume that times are
natural numbers.

The probabilities of moving among global states are rep-
resented in the model by means of labeled computation
trees. The nodes of the trees represent global states.
For any given node in a tree, the children of that node
represent the set of global states that could possibly
come next. Each arc from a node to one of its children
is labeled with the probability of moving to that state.
Thus, from any given node, the sum of the probabilites
on its outgoing arcs must be one. As in [HT93], we also
assume that the set of outgoing arcs is �nite and that all
arcs are labeled with nonzero probabilities. This �nal
assumption can be viewed as a convention that if the
probability of moving from state x to state y is zero,
then state y is not included as a child of state x.

Certain events in a system may be regarded as nonprob-
abilistic (while still being nondeterministic). The typi-
cal example occurs when a user is to choose an input and
in the analysis of the system, we do not wish to assign

a probability distribution to that choice; in such cases,
we regard the choice as nonprobabilistic. All nonprob-
abilistic choices in the system are lumped into a single
choice that is treated as being made by an \adversary"
prior to the start of execution. Thus, after this choice is
made, the system's execution is purely probabilistic. In
Halpern and Tuttle's words, the nonprobabilistic choices
have been \factored out".

In the model of computation, each possible choice by the
adversary corresponds to a labeled computation tree. In
other words, a system is represented as a set of compu-
tation trees, each one corresponding to a di�erent choice
by the adversary. There is no indication how the adver-
sary's choice is made, just that it is made once and for
all, prior to the start of execution.

2.2 Application-Speci�c System Model

In this section, we impose some additional structure
on the general model described in the previous section.
We �x the set of agents, �x our model and intuitions
regarding communication, place some (environmental)
constraints on the agents, and �x the set of choices avail-
able to the adversary.

AGENTS For our purposes we can limit the model to
three agents: (1) the system under consideration, de-
noted �, (2) the covert senders (or alternatively, the
high environment), denoted H, and (3) the covert re-
ceivers (or alternatively, the low environment), denoted
L. In the remainder of the paper, we will tacitly as-
sume that the global system is comprised of these three
agents.

MODEL OF COMMUNICATION Our model of
communication is similar to those of [BC92], [Gra92],
and [Mil90]. We view �'s interface as a collection of
channels on which inputs and outputs occur. Since we
consider the agent H (resp., L) to consist of all process-
ing that is done in the high (resp., low) environment,
including any communication mechanism that delivers
messages to �, we will not need to model messages
in transit or, in Halpern and Tuttle's terminology, the
state of the environment; rather, these components of
the global state will be included as part of H's and L's
state.

In many systems of interest, the timing of events is
of concern. (See [Lam73] for an early description of
covert communication channels that depend on timing;
see [Wra92] for more recent work.) In such cases, we
model the passage of time by taking the set of times
(i.e., the domain of the runs) to be the ticks of some
clock that is independent of the covert senders' and re-
ceivers' processing. For example, we may think of this
clock as being �'s system clock. In this way we can
properly account for covert channels that depend on
time. Note that we are considering a worst-case sce-
nario. This means that we consider the fastest way that
adversaries might synchronize as a clock. If they can-
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not �nd a common clock, they cannot communicate by
means that depend on timing.

Since the mechanisms of high-level1 I/O routines may
introduce covert channels (see, e.g., [McC88, x2.3]), we
take a very low-level view of I/O. In particular, we as-
sume one input and one output per channel per unit
time. That is, for each time we have a vector of inputs
(one for each channel) and a vector of outputs (one for
each channel). If a given agent produces no new data
value at a given time, it may in fact serve as a sig-
nal in a covert channel exploitation. Hence, we treat
such \no new signal" events as inputs. Similarly, we do
not consider the possibility that the system can prevent
an input from occurring. Rather, the system merely
chooses whether to make use of the input or ignore it.
Any acknowledgement that an input has been received
is considered to be an output.

Given these considerations, we �x our model of commu-
nication as follows. We assume the following basic sets
of symbols, all nonempty:

C: a �nite set of input/output channel names,
c1; : : : ; ck,

I: representing the set of input values,

O: representing the set of output values, and

N
+: representing the set of positive natural numbers.
This set will be used as our set of \times".

Since there is one input per channel at each time, we
will be talking about the vector of inputs that occurs
at a given time. We will denote the set of all vectors of
inputs by I[C]. Typical inputs vectors will be denoted
a; a0; a1; : : : 2 I[C].

Similarly, we will denote the set of all output vectors
by O[C] and typical output vectors will be denoted
b; b0; b1; : : : 2 O[C].

To talk about the history of input vectors up to a given
time, we introduce notation for traces. We will denote
the set of input traces of length k by IC;k. Mathemat-
ically, IC;k is a shorthand for the set of functions from
C � f 1; 2; : : :k g to I. Therefore, for a trace � 2 IC;k,
we will denote the single input on channel c 2 C at time
k0 � k by �(c; k0).

We will also need to talk about in�nite traces of inputs.
For this we use the analogous notation IC;1, which is
shorthand for the set of functions from C � N+ to I.

Similarly, we will denote the set of output traces of
length k by OC;k and the set of in�nite output traces
by OC;1. Naturally, for an output trace �, �(c; k) rep-
resents the output on channel c at time k.

1In this context, \high-level" means highly abstract rather
than highly classi�ed.

There will be situations when we want to talk about
vectors or traces of inputs or outputs on some subset
of the channels, S � C. In such cases we will use the
natural generalizations of the above notations, viz, I[S],
IS;k, IS;1, etc.

ENVIRONMENTAL CONSTRAINTS Any given
agent will be able to see the inputs and outputs on a
subset of the channels. We make this precise by \re-
stricting" vectors and traces to subsets of C. Given an
input vector a 2 I[C] and a set of channels S � C, we
de�ne a � S 2 I[S] to be the input vector on channels
in S such that a � S(c) = a(c) for all c 2 S.

Similarly, given an input trace � 2 IC;k and a set of
channels S � C, we de�ne � �S 2 IS;k to be the input
trace for channels in S such that � �S(c; k0) = �(c; k0)
for all c 2 S and all k0 � k.

We assume that the set of low channels, denoted L, is a
subset of C. Intuitively, L is the set of channels that the
low environment, L, is able to directly see. In particular,
L is able to see both the inputs and the outputs that
occur on channels in L.

In practice, there will be some type of physical or pro-
cedural constraint on the agent L to prevent it from
directly viewing the inputs and outputs on channels in
C � L. On the other hand, we place no constraints on
the set of channels that H is able to see. In particu-
lar, we make the worst-case assumption that H is able
to see all inputs and outputs on all channels. These
considerations are consistent with what we've called
the \Secure Environment Assumption" in previous work
[Gra92, GS92]. In the present paper, this assumption is
made precise in terms of our de�nition of the adversary
to be given next.

THE ADVERSARY As discussed above, in Halpern
and Tuttle's framework, all nonprobabilistic choices are
factored out of the execution of the system by �xing
an adversary at the start of execution. To make use
of this framework, we must de�ne the set of possible
adversaries from which this choice is made.

The \adversary" in our application is the pair of agents,
H and L, that are attempting to send data from the
high environment across the system � to the low envi-
ronment. To be fully general, we model these agents as
mixed strategies (in the game-theoretic sense). That is,
at each point in the execution of the system the strat-
egy gives the probability distribution over the set of
next possible inputs, conditioned on the history up to
the current point. In the next section, we present an
example to motivate the need for such generality. Be-
fore doing that, we make the adversary precise with the
following two de�nitions.

De�nition 2.1 An adversary is a conditional proba-
bility function, A(a j �; �; k). Here a 2 I[C] and k is
some time such that there is a time k0 with k � k0 � 1,
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and � 2 IC;k0 and � 2 OC;k0 . (The k indicates that the
probability of a is conditional only on the restriction of
� and � to k.) 2

Intuitively, the adversary describes the environment's
conditional distribution on the next input vector, given
the previous history of inputs and outputs. For exam-
ple, at k = 0, A(a j �; �; k) gives the probability of the
environment producing a at the �rst time unit, given
the empty history.

Later in this section, we describe how a given adversary
A and the description of a particular system, �, are
used to construct the corresponding computation tree
TA.

De�nition 2.2 We say that an adversary A satis�es
the Secure Environment Assumption with respect to a
set of channels L � C i� there exists a pair of condi-
tional probability functions H and L such that for all
a 2 I[C], k 2 N+, all � 2 IC;k, and all � 2 OC;k,

A(a j �; �; k) =
H(a�(C � L) j �; �; k) � L(a�L j ��L; ��L; k)

(where � denotes real multiplication). 2

The Secure Environment Assumption can be intuitively
understood as saying that the input on channels in C�L
at time k is (conditionally) statistically independent of
the input on channels in L at time k, and the input on
channels in L at time k depends only on previous inputs
and outputs on channels in L. For the remainder of this
paper, we will assume that all adversaries satisfy the
Secure Environment Assumption.

Since there is one tree for each possible adversary, we
can think of the set of trees as being indexed by the
adversaries. Therefore, we will often write TA, TA0 , TAi

,
etc.

It is clear that for an adversary A that satis�es the Se-
cure Environment Assumption (wrt L), the conditional
probability functions H and L that must exist are in
fact unique. Further, given H and L, there is a unique
adversary, A, for which H and L are the probability
functions that satisfy the corresponding constraint. We
may therefore sometimes write TH;L, TH0;L0 , etc. when
we want to refer to the parts of the adversary individu-
ally.

Note that our de�nition of an adversary is not meant
to be as general as the adversary discussed by Halpern
and Tuttle. (In fact, Halpern and Tuttle give no struc-
ture at all to their adversary.) Rather, our adversary
is application-speci�c; in particular, it is for reasoning
about multilevel security of probabilistic systems and is
not designed to be used outside that domain.

On the other hand, this particular adversary represents
a novel application of Halpern and Tuttle's framework.

In their examples, the adversary represents one or both
of two possible things:

� the initial input to the system; and

� the schedule according to which certain events (e.g.,
processors taking steps) occur.

In contrast, our adversary does not represent a given
input to the system. Rather, it represents a mixed
strategy for choosing the inputs to the system. In some
sense, we can think of this as a generalization on the �rst
item above; however, our application still �ts within the
framework set out by Halpern and Tuttle.

THE STATE OF THE SYSTEM At any given
point, P , in any given computation tree, TA, there
should be a well-de�ned state of the system. For our
purposes, the state includes the following information.

1. All inputs and outputs that have occurred on all
channels up to the current time.

2. Following [HT93], we make the assumption that all
points in all trees are unique by assuming that the
state encodes the adversary. That is, all nodes in
tree TA encode A. Note that we do not assume that
any given agent knows the adversary; just that it is
somehow encoded in the state. We can think of the
high part of the adversary, H, as being encoded in
the high environment and the low part, L, as being
encoded in the low environment.

3. Typically, there are additional components of the
global state representing the internal state of �.
For example, in describing �, it is often conve-
nient to use internal state variables. The state of
these variables can be thought of as a vector of val-
ues, one value for each state variable. The internal
state, when it exists, will be denoted c, and the
history of internal states will be denoted .

COMPUTATION TREES Now that we have set out
the possible states of the system (i.e., the points of com-
putations), we can talk about the construction of the
computation trees.

For each reachable point, P , we assume that �'s proba-
bility distribution on outputs is given. For example, this
can be given by a conditional probability distribution,
O(b; c j �; �; ; k), where c is the vector representing
values of all internal state variables (i.e., the internal
system state) at time k + 1, b 2 O[C] is the vector of
outputs produced by the system at k+1, and �; �;  give
the history through k of inputs, outputs, and internal
state values, respectively.

Given O(b; c j �; �; ; k) and the adversary, A we can
construct the corresponding computation tree by start-
ing with the initial state of the system (i.e., the point at
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the root of the tree with empty histories of inputs, out-
puts, etc.) and iteratively extending points as follows.

Let P be a point in the tree with internal system history
, input history �, and output history �. We will make
P 0 a child of P i�

1. P 0 is formed from P by modifying the internal sys-
tem state to c and extending P 's input history (out-
put history, resp.) with a (b, resp.); and

2. both O(b; c j �; �; ; k) and A(a j �; �; k) are posi-
tive.

In such cases, we label the arc from P to P 0 with
O(b; c j �; �; ; k) � A(a j �; �; k), i.e., the system, �,
and the environment, A, make their choices indepen-
dently.

RUNS OF THE SYSTEM A run of the system is
an in�nite sequence of states along a path in one of the
computation trees. When we want to talk about the
particular run, �, and time, k, at which a point P occurs,
we will denote the point by the pair (�; k). Further, if
we wish to talk about the various components of the
run, i.e., the trace of the inputs, �, outputs, �, or other
variables, , we will denote the run by (�; �; ) and
denote the point, P , by (�; �; ; k).

For a given tree, T , we denote the set of runs (i.e., in�-
nite sequences of states), formed by tracing paths from
the root, by runs(T ).

For security applications we are concerned with infor-
mation ow into and out of the system rather than with
information in the system per se. Thus, though our
system model is adequate to represent internal states
and traces thereof, in subsequent sections it will be
adequate to represent systems entirely in terms of in-
put and output. For example, system behavior at time
k can be represented by `O(b j �; �; k)' rather than
`O(b; c j �; �; ; k)'.

3 Syntax

In this section we set out our formal language and use
it to describe two simple systems. Then we give the
axioms and rules of our logic.

3.1 Formation Rules

To describe the operation of the system under consider-
ation (viz, �), we use a variant of Lamport's Raw Tem-
poral Logic of Actions (RTLA) [Lam91].2 The primary
di�erence is that we add a modal operator Pri(') that
allows us to specify and reason about the probabilistic
behavior of the system.

2Roughly speaking, Raw Temporal Logic of Actions (RTLA) is

the same as Lamport's Temporal Logic of Actions (TLA) without
the treatment of stuttering [Lam91]. Since we are not, in this

paper, concerned with re�nement, we omit the considerations of
stuttering and use RTLA.

From the previous section, we assume the following ba-
sic sets of symbols, all nonempty: C, I, O, and also R.
Members of Rwill have the usual representation|e.g.,
43:5 2 R.

We will also be talking about the subjects (or agents)
of the system. Formally, a subject , S � C, is identi�ed
with the process's view of the system, i.e. the set of
channels on which it can see the inputs and outputs.

Formulae in the language are built up according to the
following rules.

� constants from the set of basic symbols are terms.

� state variables (representing the value of that vari-
able in the current state) are terms. Among the
state variables, there are two reserved for each com-
munication channel. For each c 2 C, we have a
state variable cin that takes values from I, and an-
other state variable cout that takes values from O.
Note that, implicitly, inputs are from the covert
senders and receivers into the system (�) and out-
puts are from the system to the covert senders and
receivers. This is because � is the system under
consideration (i.e., with respect to which we are
reasoning about security). We have no mechanism
(and no need) to specify communication between
agents not including the system under considera-
tion.

� primed state variables (e.g., c0
in
) are terms. (These

represent the value of the variable in the next
state.)

� We use standard operators among terms (e.g., +
and � for addition and multiplication, respectively),
with parentheses for grouping subterms, to form
composite terms.

� an atomic predicate is an equation or inequality
among terms not containing primed state variables.

� an atomic action is an equation or inequality
among terms (possibly including primed as well as
unprimed state variables). (Note that all predicates
are actions.)

� for any action, ', and for any subject S � C,
PrS(') is a real-valued term (representing the sub-
jective probability that S assigns to the formula ').

� For any predicate, ', ' is a temporal formula.

� For any action or temporal formula', 2' is a tem-
poral formula (to be read intuitively as always ').

� We build up composite predicates, actions, and
temporal formulae, resp., in the usual recursive
fashion using ^, _, :, and !.
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Now, to specify and reason about our security prop-
erties of interest, we add three �nite sets of modal
operators on formulae: K1; : : : ;Kn, K1; : : : ;Kn, and
R1; : : : ; Rn, representing knowledge of a (relatively)
weak subject, knowledge of a powerful subject, and
permitted-knowledge respectively for each subject (rep-
resented by the subscript of the operator). Therefore,
we add the following formation rules to our syntax.

� For any action (temporal formula, resp.) ', and
for any subject S � C, KS (') (representing that
the weak subject S knows '), KS(') (representing
that the powerful subject S knows ') and RS(')
(representing that S has permitted knowledge of ')
are actions (temporal formulae, resp.).

Later in the paper, we will make the meaning of these
three operators precise. For now, we merely mention
that the weak-subject knowledge operators (KS ) will
be given the standard semantics (e.g., as in [HT93]);
the powerful-subject knowledge operators (KS) will be
given semantics that imply greater knowledge on the
part of the subject (viz, knowledge of the probability of
certain future events).

3.2 Examples

We now give two simple examples of how to describe sys-
tems in our language. Ultimately, we will have su�cient
formal machinery to show that one of these systems is
secure and the other is not; however, here we simply set
them out formally. These descriptions are meant to give
the reader an intuitive feel for the meaning of expres-
sions in the language. Precise meanings will be given
in x4. Also, the second of these examples will motivate
our choice of modeling adversaries as strategies.

Example 3.1 The �rst example is a simple encryption
box that uses a \one-time pad" [Den82]. It has two
channels, high and low . At each tick of the system clock,
it inputs a 0 or 1 on the high channel and outputs a 0
or 1 on the low channel. The low output is computed
by taking the \exclusive or" (denoted �) of the high
input and a randomly generated bit. It is well known
that this results in an output stream that is uniformly
distributed. Therefore, we can describe this system as
follows.

Let C = fh; lg, I = f0; 1g, and O = f0; 1g. Then, the
system is speci�ed by the following formula.

2 (PrC(l
0
out

= 0) = PrC(l
0
out

= 1) = 0:5)

In this formula, lout is a state variable representing the
output on the low channel, l. Therefore, l0

out
is the

output on l at the next time. Further, PrC(l
0
out

= 0)
denotes the probability that the output on l is a 0 at
the next time. Hence, the entire formula says that at all

times, the probability of � producing a one (1) on the
next clock tick is equal to the probability of producing
a zero (0), which is equal to 0:5. Note that we have not
speci�ed anything about the probability distribution on
inputs, since that is part of the environment behavior
rather than the system behavior.

2

Example 3.2 The second example is an insecure ver-
sion of the simple encryption box. This system was �rst
described by Shannon in [Sha58].

As in the �rst example, at each tick, � computes the
\exclusive or" of the high input and a randomly gen-
erated bit and sends that value out on the low chan-
nel. However, in this system, the randomly generated
bit used at any given tick is generated and sent out on
the high output channel during the previous tick of the
clock.

This can be expressed in our formalism as follows. Let
C = fh; lg, I = f0; 1g, and O = f0; 1g. The following
formula speci�es the system.

2((PrC(h
0
out

= 0) = PrC(h
0
out

= 1) = 0:5)
^(l0

out
= hout � h0

in
))

Note that in the second conjunct, hout is unprimed, in-
dicating that the output on l at the next time is the
\exclusive or" of the current output on h with the next
input on h.

Now note that if the high agent ignores its output, then
this system acts exactly as the system from the previous
example (and can be used for perfect encryption). In
particular, suppose we were to model an adversary as
an input string|the input to be provided by the high
agent. Then, it is easy to see that for any adversary (i.e.,
any high input string) �xed prior to the start of execu-
tion, the output to low will be uniformly distributed
and, in fact, will contain no information about the high
input string.

However, the bit that will be used as the one-time pad
at time t is available to the high agent at time t � 1.
Therefore, (due to the algebraic properties of \exclusive
or", viz, x � x � y = y) the high agent can use this
information to counteract the encryption. In particular,
the high agent can employ a (game-theoretic) strategy
to send any information it desires across the system to
the low agent.

For example, suppose the high agent wishes to send a
sequence of bits, b1; b2; : : :. We'll denote the high input
(resp., output) at time k by hin (k) (resp., hout(k)). The
appropriate strategy for the high agent is as follows.

The high agent chooses its input for time k+1
as hin(k + 1) = hout(k) � bk.

Thus, the output to low at time k+1, denoted lout(k+1)
is computed as follows.
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lout (k + 1) = hout(k) � hin(k + 1)
= hout(k) � hout(k) � bk
= bk

The �rst line follows from the system description, the
second from the high strategy, and the third from the
properties of �. Thus, by employing the correct strat-
egy, the high agent can noiselessly transmit an arbitrary
message over � to the low agent. This, of course, mo-
tivates our choice of strategies as the adversary, rather
than, e.g., input strings.

2

We now have some sense of the formal language, with
the exception of the modal operators KS , KS , and RS .
As previously mentioned, these operators are used to
formalize the security properties that interest us; so,
we will discuss their use in a later section. First, we
describe the logical axioms and inference rules that are
used to prove properties about systems.

3.3 The Logic

We now give the axioms of our logic. In the following, we
will use `'' and ` ' to refer to formulae of our language.

Propositional Reasoning All instances of tautolo-
gies of propositional logic.

Temporal Reasoning The following are standard ax-
ioms for temporal reasoning about discrete sys-
tems. The logic they constitute is generally called
S4.3Dum or sometimes D. (See [Gol92] for details.
Note also that these are the formulae Abadi uses
to axiomatize Lamport's TLA [Aba90].) We have
labeled the axioms with their historical names. Let
' and  be formulae of our language.

K 2('!  )! (2'! 2 )

4 2'! 22'

D 2'! 3'

L 2(' ^2'!  ) _2( ^2 ! ')

Z 2(2'! ')! (32'! 2')

`3'' can be interpreted roughly as saying that at
some point ' is true. Formally, it is viewed as nota-

tional shorthand: for all formulae ', 3'
4
= :2:'.

K basically guarantees that the temporal operator
respects modus ponens. Each of the other axioms
captures a feature of time that we desire. 4 gets us
transitivity. D guarantees that we don't run out of
time points (seriality). L guarantees that all points
in time are connected. And, Z guarantees that time
is discrete. (Between any two points in time there
are at most �nitely many other points.)

Real Number Axioms Standard �eld and order ax-
ioms for the real numbers (to apply to members
of R and function terms with range R.) We will
not enumerate these axioms. (See any elementary
real analysis book for enumeration, e.g., [Mar74] or
[Rud].)

Epistemic Reasoning The (nonredundant) axioms of
the Lewis system S5. (cf. [Che80] or [Gol92]) ap-
ply to the strong knowledge operators (Ki), the
weak knowledge operators (Ki), and the permitted-
knowledge operators (Ri). We state them only for
the (strong) knowledge operators. As for temporal
axioms, we give the axioms their historical names.
Let S be a subject, and let ' and  be formulae of
our language.

K [KS(') ^KS (' !  )] ! KS ( ) (Knowledge
respects modus ponens.)

T KS(')! ' (What one knows is true.)

5 :KS(') ! KS:KS(') (If you don't know
something, then you know that you don't
know it.)

We also have two axioms for relating weak knowl-
edge to permitted knowledge and permitted knowl-
edge to strong knowledge.

kR KS(')! RS(')

RK RS(')!KS (')

Random Variable Axioms The standard require-
ments for random variables (in the probability-
theoretic sense).

PM (Positive Measure) for any formula, ', and
any subject, S, PrS(') � 0 (The probability
of any event is greater than or equal to zero.)

NM (Normalized Measure) for any channel, c, and
any subject, S,
P

i2I PrS(cin = i) = 1 (The probability of

all possibilities sums to one.)
P

o2O PrS(cout = o) = 1

Input/Output Axioms for powerful-subject-
knowledge and permitted-knowledge of inputs and
outputs. Let S be a subject, let c 2 S be a channel
that is visible to S, and let a 2 I be an input, b 2 O
be an output, and r 2 R be a real number.

KO PrS(c
0
out

= o) = r! KS(PrS(c
0
out

= o) = r)

RI PrS(c
0
in
= i) = r ! RS(PrS(c

0
in
= i) = r)

Intuitively, KO say that powerful subjects know the
distribution on their own outputs conditioned on the
previous history of inputs and outputs they have seen.
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RI says that all subjects are permitted to know the
conditional distribution on their own inputs.

Note that a powerful subject knows the distribution on
its own inputs conditioned on the previous history of in-
puts and outputs it has seen; this follows trivially from
RI and RK, thus we have a theorem KI, which is anal-
ogous to RI. From theorem KI and axiom KO we can
inductively show that powerful subjects know the prob-
ability of all events they can see in �nite time.

On the other hand, a subject is permitted to know the
conditional distribution on its own outputs only if the
system is secure|e.g., for a low subject, only if knowing
that distribution does not reveal any information about
the distribution on high inputs. The absence of an ax-
iom RO, corresponding to KO, is what syntactically
captures this.

The above are all of our axioms. We now give the rules
of our logic, which are all standard.

MP (Modus Ponens) From ' and '!  infer  .

Nec (Necessitation) This rule applies to all of the
modal operators we have introduced: 2, KS , KS ,
and RS. (It is called `necessitation' because it was
originally applied to a necessity operator.) We set
it out for 2 only. From ` ' infer ` 2'.

Note that in the above, `` '' indicates a derivation
of ' from the axioms alone, rather than from a set
of premises. (Derivations will be formally de�ned be-
low.) Thus, in the case of knowledge (strong or weak)
for example, Nec says that if ' is a theorem (derivable
without any premises) then all subjects know '.

We now have su�cient machinery to give a characteri-
zation of a formal derivation.

De�nition 3.3 Let � be a �nite set of formulae
of our language. A �nite sequence of formulae
'1; '2; '3; : : : ; 'n is called a derivation (of 'n from �)
i� each 'k (k = 1; : : : ; n) satis�es one of the following:

� 'k 2 �

� 'k is an axiom.

� 'k follows from some theorem by Nec.

� For some i; j < k, 'k results from 'i and 'j by
MP.

We write `� ` '' to indicate a derivation of ' from �,
and we write `` '' to indicate a derivation of ' from
the axioms alone. 2

This completes our statement of the formal system.

4 Semantics

In the last section we presented a syntactic system. So
far we have only intuitive meanings to attach to this
formalism. In this section we provide semantics for our
system in terms of the Halpern-Tuttle framework and
our application-speci�c model set out in x2.

4.1 Semantic Model

A model M is a tuple of the form:

hR;+; �;�;W;T ; C; I; O; v; �powerful1 ; : : : ; �powerful
jP(C)j

;

�weak1 ; : : : ; �weak
jP(C)j

; �1; : : : ; �jP(C)j i

Here, R and its operations and ordering relation gives
us the real numbers; W is the set of worlds (i.e., global
states); T is the set of labeled computation trees (with
nodes from W ); C, I, and O are the sets of channels,
possible inputs, and possible outputs, respectively; v is
the assignment function, which assigns semantic values
to syntactic expressions at each world; (values of v at a
particular world P , will be indicated by the projection

`vP '); the �
powerful

iS
and �weakiS

are knowledge accessibil-
ity relations, one each for each subject S; and the �iS
are permitted-knowledge accessibility relations, also one
for each subject. In the remainder of this paper we will
generally denote the accessibility relations correspond-

ing to subject S by `�
powerful

S ', `�weakS ', and �S '. These
will each be further explained when we come to the as-
signment function.

In assigning meaning to our language, it is of funda-
mental importance to associate a probability space with
each labeled computation tree. In particular, for each
labeled computation tree TA we will construct a sample
space of runs, RA, an event space, XA (i.e., those sub-
sets of RA to which a probability can be assigned) and
a probability measure �A that assigns probabilities to
members of XA.

Our construction of this probability space is quite natu-
ral and standard (see, e.g., [Sei92] as well as [HT93] for
two instances). We will not go into detail explaining the
basic concepts of probability and measure theory here
(cf. [Hal50] or [Shi84]).

De�nition 4.1 For a labeled computation tree TA, the
associated sample space RA is the set of all in�nite
paths starting from the root of TA.

The set e � RA, is called a generator i� it consists
of the set of all traces with some common �nite pre-
�x. The generators are the probability-theoretic events
corresponding to �nite traces. We can now de�ne the
event space, XA, to be the (unique) �eld of sets gener-
ated by the set of all generators (i.e., XA is the smallest
subset of P(RA)

3 that contains all of the generators and
is closed under countable union and complementation).

3P denotes \powerset".
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Suppose e is a generator corresponding to the �nite pre-
�x given by (�; k). Then, the probability measure, �A,
is de�ned for e as the product of the transition proba-
bilities from the root of the tree, along the path �, up
to time k. Further, there is a unique extension of �A to
the entire event space [Hal50]. 2

4.2 Assignment Function

For a given point, P , we will assign truth values to tem-
poral formulae ' at this point. In addition, we assign
values to variables, for example the input on a channel,
at this point. The assignment function that does both
of these is denoted by vP .

To de�ne vP , we will need to assign truth values to
action and temporal formulae. Therefore we will also
de�ne functions v(P1;P2) (where P1 and P2 are points)

and v� (where � is a run) to assign truth values to action
formulae over a pair of points and temporal formulae on
a run, respectively.

We de�ne vP , v(P1;P2), and v� mutually recursively be-
low. First we present some additional notation.

Notation Since nodes are unique even across trees, for
a given node P , there is no ambiguity in referring to
\the tree that contains P". In the following, we will use
tree(P ) to denote that tree.

Further, since there is a one-to-one correspondence from
trees to adversaries, we can refer to \the adversary cor-
responding to tree(P )". We denote that adversary by
A(P ).

We use the notation succ(P ) to denote the set of nodes
that succeed P in tree(P ).

We use the notation extensions(P ) to denote the set of
in�nite sequences of states starting at P in tree(P ).

As discussed in [HT93], to each subject, S, and point,
P , we need to associate a sample space, SS;P . Each
such sample space will be a set of points from tree(P ).
Intuitively, these are the points (within the tree that
contains the current execution) that the subject S con-
siders possible. We will set out these sample spaces
below. For the time being, we simply make use of the
notation SS;P to refer to them.

We will be rather abusive in the use of our probability
measures �A. In particular, when we have a �nite set
of points, x, we will write �A(x) to denote the prob-
ability (as assigned by �A) of passing through one of
the points in x. Technically, this is wrong, since �A is
de�ned for (certain) sets of runs; not for sets of points.
However, the mapping between the two is extremely
natural; the set of runs corresponding to a point is the
set of runs that pass through that point. Further, by the
construction of our probability spaces, all sets of runs
corresponding to �nite sets of points are measureable.
Therefore, there is no danger in this abuse of notation
and it greatly simpli�es our presentation.

As is standard (see, e.g., [HT93]), we will be using ac-
cessibility relations|one for each subject|on points to
give semantics to our three knowledge operators. We
de�ne these relations below. For the time being, we

simply make use of the notation �
powerful

S to refer to the

powerful-subject knowledge accessibility relation, �weakS

to refer to the weak-subject knowledge accessibility re-
lation, and �S to refer to the permitted-knowledge ac-
cessibility relation. 2

We now de�ne vP , v(P1;P2), and v�. Let P be a point

at time k in the execution � = (�; �; ) in computation
tree TA.

� Numbers are assigned to number names.

� Members of I and O are assigned to their syntactic
identi�ers.

� For any channel c 2 C,

vP (cin )
4
= �(c; k)

� For any channel c 2 C,

vP (cout)
4
= �(c; k)

� For any variable name, X, excluding channel vari-
ables (such as cin or cout)

vP (X)
4
= (X; k)

� To assign truth values to actions, we need to assign
values to terms at pairs of points. Constants do
not change their values when we move to pairs of
points. However, primed and unprimed variables
are evaluated di�erently. For any state variable,
X, and any pair of points (P1; P2),

v(P1;P2)(X)
4
= vP1(X)

In contrast,

v(P1;P2)(X
0)
4
= vP2(X)

v(P1;P2)(')
4
= vP1 jP2(')

where vP1 jP2(') follows vP1 except that all primed
terms are assigned according to vP2 .

� Composite terms are assigned values at a point and
at a pair of points in the natural way. For example,

vP (X + Y )
4
= vP (X) + vP (Y )

and

v(P1;P2)(X + Y )
4
= v(P1;P2)(X) + v(P1;P2)(Y )
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� Similarly, predicates and action formulae are as-
signed truth values at a point and at a pair of
points, respectively, in the natural way. For ex-
ample,

vP (X � Y ) = true i� vP (X) � vP (Y )

and

v(P1;P2)(' ^  ) = true i�

v(P1;P2)(') = true and v(P1;P2)( ) = true

� An action formula, ', is true at a point, P , i� it is
true for all pairs of points emanating from P . More
precisely,

vP (') = true i�
8P 0 2 succ(P ); v(P;P 0)(') = true

(Since we have not needed to include quanti�cation
in our language we are free to use `8' and `9' as
metalinguistic shorthand.)

� To interpret the probability of an action ' at a point
P , we will take the set of all pairs of points, (P1; P2)
emanating from points in SS;P . Restricting to this
set, we compute the probability of those pairs such
that v(P1;P2)(') evaluates to true. More precisely,
for any action formula, ', and for any subject S �
C,

vP (PrS ('))
4
= �A(P )(SS;P (') j SS;P )

where

SS;P (')
4
= fP2 j 9P1 2 SS;P such that
P2 2 succ(P1) and v(P1;P2)(') = true g.

� For any predicate, ', and run, �,

v�(')
4
= v(�;1)(')

� For any (action or temporal) formula, ', and run,
�,

v�(2') = true i� 8i; v(�;i)(') = true

� A temporal formula is true at a point i� it is true in
all runs extending from that point. More precisely,
for any temporal formula, ',

vP (')
4
= 8� 2 extensions(P ); v�(')

� Composite action formulae and temporal formulae
are assigned truth values at points in the natural
way. For example,

vP (' ^  ) = true i�
vP (') = true and vP ( ) = true

� Our three knowledge operators are all S5 modal
operators and are given semantics in terms of the
accessibility relations (on points) in the standard
way; viz, for powerful-subject knowledge,

vP (KS(')) = true i�

8P 0; �
powerful

S (P; P 0)) vP 0 (') = true

for weak-subject knowledge,

vP (KS(')) = true i�
8P 0; �weakS (P; P 0)) vP 0 (') = true

and for permitted knowledge,

vP (RS(')) = true i�
8P 0; �S(P; P

0)) vP 0 (') = true

To complete our semantics for probability formulae, we
need to choose the sample spaces SS;P for each sub-
ject at each point. Our approach is quite straightfor-
ward. We will choose SS;P to be the set of points within
tree(P ) that have the same history of inputs and out-
puts on channels S as occur on the path to point P .
More precisely, we have the following de�nitions.

De�nition 4.2 Let S � C be a subject and let �1 =
(�1; �1; 1) and �2 = (�2; �2; 2) be two runs (not nec-
essarily in the same tree). We say that �1 and �2
have the same S-history up to time k if and only if
8i; 1 � i � k; 8c 2 S;

�1(c; i) = �2(c; i) and �1(c; i) = �2(c; i)

2

De�nition 4.3 Let S � C be a subject and let P1 =
(�1; k1) and P2 = (�2; k2) be two points (not necessar-
ily in the same tree). We say that P1 and P2 have the
same S-history if and only if the following two condi-
tions hold.

1. k1 = k2.

2. �1 and �2 have the same S-history up to time k1.

2

De�nition 4.4 Let S � C be a subject and P be a
point; the sample space for S at point P is given by

SS;P
4
= f P 0 j tree(P 0) = tree(P ) and
P 0 and P have the same S-history g 2

In a more general setting, we would also want to con-
sider the possibility that a subject S has internal state
variables and could use these to make �ner distinctions
between points. However, in our application, all of the
internal processing of the relevant subjects (viz, H and
L) is encoded in the adversary and is thus factored out
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of the computation tree. We therefore do not lose any
needed generality in making the above de�nition.

Now, to complete our description of the assignment

function we need only describe the relations �
powerful

S ,

�weakS , and �S for all S � C.

De�nition 4.5 Our de�nition of �weakS (and hence our
de�nition of weak-subject knowledge) is the standard
de�nition of knowledge in a distributed system. In par-
ticular, for any two points, P1 and P2 (not necessarily in
distinct trees) and any subject, S � C, We say that P2 is
weak-subject-accessible from P1, denoted `�weakS (P1; P2)'
if and only if P1 and P2 have the same S-history. 2

Our de�nition of �
powerful

S (and hence, our de�nition of
powerful-subject knowledge) is novel. In the analysis of
distributed protocols and in other areas of computer sci-
ence, it is typical to use the above weak-subject knowl-
edge accesibility relation (or something roughly equiva-
lent). Our de�nition of accessibility for powerful-subject
knowledge will require more|in other words, using this
de�nition subjects know more. In particular, subjects
\know" the probability distribution over the future in-
puts and outputs on the channels that they can see.
That is, if the probability of a given future output on
a low channel is x, then (assuming a powerful subject)
the low environment knows that. To make this notion
precise, we need some de�nitions.

De�nition 4.6 Let S � C be a subject and let e be
a set of runs, f�ig, (not necessarily taken from any one
computation tree). We say that e is an S-event if and
only if there exists a time k 2 N+ such that for any two
runs, �1 and �2, having the same S-history up to time
k, �1 2 e i� �2 2 e.

For an S-event, e, we will refer to the least k such that
above condition holds as the length of e. 2

Intuitively, an event e is an S-event if and only if there
is some �nite time k (i.e., its length) after which S can
always determine whether or not e has occurred.

Note that in general, an S-event contains runs from
more than one computation tree. Therefore, such
\events" will not be measurable in any of our proba-
bility spaces. Rather, we think of them as meta events
and we will be interested in the measure of the subset
of the runs that are contained in a given computation
tree. To make this precise, we introduce the following
de�nition.

De�nition 4.7 Given a computation tree, TA, and an
S-event, e, the projection of e onto TA, denoted eA, is
given by:

eA
4
= runs(TA) \ e

2

When it is clear from context what is meant, we may
occasionally confuse the meta-event with its projection,
e.g., we might write `�A(e)' for `�A(eA)'.

Observation 4.8 Every projection of every S-event is
measurable. That is, for any S-event, e, and any com-
putation tree, TA,

eA 2 XA

This is due to the restriction on S-events that they be
observable within some �nite time. In particular, the
projection of an S-event onto a tree, T , must also be ob-
servable within a �nite time, and so it must be formable
from a �nite number of unions and complementations
of the generators of T . 2

Now we are ready to give the de�nition of the knowledge
accessibility relation.

De�nition 4.9 Let P1 and P2 be two points in (not
necessarily distinct) trees TA1

and TA2
, respectively and

let S � C be a subject. We say that P2 is powerful-

subject-accessible from P1, denoted `�
powerful

S (P1; P2)' i�

1. P1 and P2 have the same S-history; and

2. for any S-event e, �A1
(ejSS;P1) = �A2

(ejSS;P2)

2

Thus, when two points are �
powerful

S -accessible, this im-
plies not only that the two points have the same S-
history, but also, conditioned on the current S-history,
the probability distribution on all S-events, including
future events, is the same. As mentioned previously,
using this de�nition, subjects \know more" than when
using the standard de�nition. However, we view this as
another case where we've adopted the worst-case sce-
nario; that is, we've given the penetrators, H and L,
the greatest conceivable knowledge at any given point
in the execution of the system. We will see later in
the paper that this choice corresponds to some exist-
ing information-theoretic de�nitions of perfect multi-
level security.

Our de�nition of permitted knowledge is also novel.
From our viewpoint, a subject's permitted knowledge
does not change over the course of the system's execu-
tion. That is, a given subject's permitted knowledge is
set prior to the start of execution. (It is only a sub-
ject's knowledge that changes during the system's ex-
ecution.) Thus, we can capture a subject's permitted
knowledge by de�ning an accessibility relation on com-
putation trees. We will say that two points are accessi-
ble if and only if they have the same S-history and their
two containing trees are accessible; roughly speaking,
two computation trees, TA1

and TA2
, will be accessible

if and only if the parts of the adversaries, A1 and A2,
that correspond to S \act the same" in both trees. We
make this precise as follows.
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De�nition 4.10 Let S be a subject and TA1
and TA2

be two computation trees. We say that TA2
is �S-

accessible from TA1
, denoted `�S(TA1

; TA2
)' i� for any

point P1 in TA1
there is a point P2 in TA2

such that

1. P1 and P2 have the same S-history; and

2. for any channel c 2 S and any input i 2 I,
vP1 (PrS(c

0
in
= i)) = vP2(PrS(c

0
in
= i)).

2

De�nition 4.11 Let S be a subject and P1 and P2 be
two points. We say that P2 is �S -accessible from P1,
denoted `�S(P1; P2)' if and only if

1. P1 and P2 have the same S-history; and

2. �S(tree(P1); tree(P2)).

2

Thus, the �S relation reects the fact that subjects are
permitted to know the conditional probability distribu-
tion on their inputs: two points are �S -accessible (i.e., as
far as S is permitted to know they are the same point) if
and only if the conditional distribution on inputs visible
to S is the same at both points.

The de�nition of permitted knowledge and the Secure
Environment Assumption combine to isolate the ques-
tion that interests us: \Can the low environment (L)
come to know, via the system of interest (�), some-
thing about the activity of the high environment (H)?"
To see how this question is captured, consider a subset
L of the interface of �. By our de�nition of permit-
ted knowledge, the low environment, L, is permitted
to know how the inputs on L are chosen, but not how
other (high) inputs are chosen. Further, by the Secure
Environment Assumption, L cannot get any informa-
tion about how high inputs are chosen via any means
outside of �. Thus, if the low environment is able to
gain some information that it is not permitted to know,
it must have been information about the high environ-
ment and it must have been gained via �.

In the remainder of the paper, for a point P , formula ',
and set of formulae �, we will use `P j= '' to indicate
that ' is true at P , and `P j= �' to indicate that all
members of � are true at P . Finally, we will use `� j=
'' to indicate that ' is true at all worlds at which all
members of � are true.

4.3 Soundness

In x5 below we give a syntactic characterization of se-
curity and show that the semantic interpretation of
our syntactic characterization of security is equivalent
to certain previously developed information-theoretic

characterizations. However, the signi�cance of these re-
sults is reduced unless the logic is sound. For, without
soundness there is no guarantee that any formal proof
of security we might give for a system implies any in-
dependently motivated notion of security. A soundness
theorem gives us just such a correspondence. The above
given logic is sound with respect to the above given se-
mantics. A proof is is set out in [GS95].

This completes our discussion of the logic itself. In the
remainder of the paper we focus on security and appli-
cations of the logic thereto.

5 Formal De�nition of Security

In this section, we give a de�nition of security|which
we call the Formal Security Condition (FSC)|using the
time and knowledge operators of our logic.

De�nition 5.1 Let L � C be a subject. Suppose �
is a set of premises that describe a system �. We say
that � satis�es the Formal Security Condition (FSC)
with respect to L if and only if, for every b 2 O[L], the
formula

2(PrL(L
0 = b) = r! KL(PrL(L

0 = b) = r))

is derivable from �.
We say that � satis�es the Semantic Interpretation of
the FSC with respect to L if and only if, for every b 2
O[L],

� j= 2(PrL(L
0 = b) = r! KL(PrL(L

0 = b) = r))

.

2

Intuitively, FSC says that at all times the low environ-
ment knows the probability distribution on its next out-
put.

5.1 Relationship to Probabilistic Noninter-
ference

In this subsection we recall the de�nition of Proba-
bilistic Noninterference (PNI), as given in [Gra92], and
prove that the semantic interpretation of FSC is equiv-
alent to PNI.

De�nition 5.2 Let A1 and A2 be two adversaries that
satisfy the Secure Environment Assumption. We will
say that A1 and A2 agree on L behavior i� there exist
H1, H2, and L such that H1 and L are the unique prob-
ability functions that describe A1 (as in De�nition 2.2)
and H2 and L are the unique probability functions that
describe A2. 2

Now, we state the de�nition of PNI in terms of our
model.
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De�nition 5.3 Let � be a system with computation
trees T (�). We say that � satis�es Probabilistic Non-
interference (PNI) with respect to a subject L � C i�
for any two trees satisfying the Secure Environment As-
sumption, TA; TA0 2 T (�) and any L-event, e, if A and
A0 agree on L behavior, then

�A(e) = �A0(e)

2

PNI is equivalent to Browne's (independently devel-
oped) Stochastic Non-Interference [Bro89]. The signi�-
cance of PNI is that it is arguably a necessary and su�-
cient condition for a system to be free of covert channels
(cf. [Bro91]).

Before we state the main result of this section, we state
a lemma that is also interesting in its own right. Space
limitations prevent the inclusion of proofs of our results
here.

Lemma 5.4 Suppose that TA and TA0 are two trees
that agree on L behavior (and satisfy the Secure En-
vironment Assumption). Further suppose that for any
two points, P1 2 TA, P2 2 TA0 , and any low output
vector, b 2 O[L], if P1 and P2 have the same L-history,
then

vP1(PrL(L
0
out

= b)) = vP2(PrL(L
0
out

= b))

Then, for any L-event, e,

�A(eA) = �A0(eA0 )

2

We can now state the following theorem relating PNI
and FSC.

Theorem 5.5 Let � be a set of formulae describing �
and let L � C be a subject. Then, � satis�es PNI with
respect to L i� � satis�es the semantic interpretation of
FSC with respect to L. 2

A signi�cance of this theorem is that (given soundness
as proven in [GS95]) verifying that a system satis�es
FSC is equivalent to showing that it satis�es PNI, which
(as was previously mentioned) is a necessary and su�-
cient condition for a system to be free of covert channels.

5.2 Examples, continued

We note here that the security of the encryption box of
Example 3.1 with respect to a subject L � C is formally
derivable. In fact, once the assumptions are written
down, there is virtually nothing to prove. Recall the
system speci�cation: If C = fh; lg, I = f0; 1g, and

O = f0; 1g, then, the system is speci�ed by the following
formula.

2 (PrC(l
0
out

= 0) = PrC(l
0
out

= 1) = 0:5)

Recall also that subjects are assumed to always know
that the system description holds at all times. Thus,

� = f2KL2 (PrL(L
0
out

= 0) = PrL(L
0
out

= 1) = 0:5)g

The only b 2 O[L] are O and 1; hence, FSC with respect
to L for this system is:

2 (PrC(L
0
out

= 0) = 0:5^ PrC(L
0
out

= 1) = 0:5)!
KL (PrL(L

0
out

= 0) = 0:5 ^ PrL(L
0
out

= 1) = 0:5)

But, this is trivially derivable from �.

We also observe that for the insecure encryption box
of Example 3.2 � =̀ FSC (where � encompasses those
formulae that embody the system description and our
assumptions about knowledge thereof). It is obvious
that the insecure encryption box fails to satisfy PNI.
By the attack described in the original example, we can
easily �nd two adversaries that satisfy the Secure En-
vironment Assumption and agree on low behavior and
yet disagree on the probability of certain low events. In-
deed, the low environment can assign 0=1 probabilities
to any output sent by the high part of the adversary.
By theorem 5.5, we thus have that � =j= SSC. And, by
soundness, it follows that � =̀ FSC.

6 Conclusions and Relation to Previous

Results

In [GS92] a de�nition of security was presented that
we called the Syntactic Security Condition (SSC).
In [GS95] this was rendered into the framework of
this paper using the powerful-subject-knowledge and
permitted-knowledge operators of our logic. This def-
inition is based on the de�nition of \Causality" given
by Bieber and Cuppens [BC92], which was based on the
work of Glasgow, MacEwen, and Panangaden [GMP90].
SSC says that a system is secure with respect to the set
of low processes, L, if and only if, for any logical for-
mula', the following formula is derivable from the given
premises describing the behavior of the system �.

2(KL(')! RL(')) (1)

Although the statement of SSC is almost syntactically
identical to Bieber and Cuppens' de�nition of Causal-
ity, due to the di�erences in the semantics of the re-
spective logics, the meanings of SSC and Causality are
di�erent.4 In fact, it is straightforward to show that for
deterministic systems, the meaning of SSC is equivalent

4For technical reasons, Bieber and Cuppens' de�nitionomitted
the 2 operator.
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to the meaning of Causality. Thus, since SSC addition-
ally applies to probabilistic systems, SSC can be viewed
as a generalization of Causality. However, since SSC
requires that we have a derivation for all formulae of
the language, even those having nothing to do with the
system, it is of limited value for veri�cation.

This led us to develop a syntactic veri�cation condition.
Though the syntactic veri�cation condition we origi-
nally gave in [GS92] appears somewhat complex, the for-
mula given in [GS95], hereafter called `SVC', is almost
the same as FSC. The only di�erence is that SVC has a
subscript C in the antecedent where FSC has a subscript
L, i.e., 2(PrC(L

0 = b) = r! KL(PrL(L
0 = b) = r))

instead of 2(PrL(L
0 = b) = r ! KL(PrL(L

0 = b) =
r)).

Though subtle the di�erence is important, primarily be-
cause SVC is too strong. Recall Example 3.1, the secure
encryption box. In that example the exclusive-or of each
high input bit was taken with a bit of key stream that
was equally likely to be 0 or a 1. The result was then
output to low at the next clock tick. Consider the fol-
lowing variation on this. The result of the XOR is out-
put to high rather than to low one tick after each high
bit is input. The same value is then output to low on the
next tick. (This might be done for auditing purposes.
In this sense the example is reminiscent of one given in
[McL90].) It should be readily apparent that the en-
cryption box in this example is still secure. It should
also be readily apparent that this example violates SVC
but not FSC. Thus SVC is too strong a criterion for mul-
tilevel security. Whether FSC or SVC is easier to verify
is impossible to say without further practical examina-
tion. Our examples above are too trivial to be taken as
representative. As of this writing we are still examining
these and other veri�cation conditions for their practi-
cal signi�cance. Regardless of which condition, if any,
ultimately proves to be practically useful, FSC remains
of theoretical importance: its meaning is equivalent to
PNI, and, unlike SSC, it is in principal syntactically
veri�able.

SVC also remains important, for tying logical char-
acterizations of security to information-theoretic char-
acterizations. The same is true for SSC, perhaps all
the more so because it is itself a version of a previ-
ous characterization of security [GMP90, BC92]. How-
ever, in order to provide that connection in the case
of SSC we were forced to represent the somewhat un-
usual modalities of strong-subject knowledge and per-
mitted knowledge.5 And, this required the development
of rather complex accessibility relations to capture them

5That the meaning of SSC is equivalent to PNI was �rst pre-
sented in [GS92]. Proof of this result with respect to the logical
framework of this paper is given in [GS95]. Similarly, the connec-
tion between SVC and an information-theoretic condition (AFM)

was �rst presented in [GS92] and proven in the current framework
in [GS95].

semantically. While these are revealing and interesting
in their own right, FSC requires only a standard knowl-
edge operator with a standard semantics. That is one
more advantage to this characterization.

Finally, we note that it only became apparent to us that
we could e�ectively capture PNI using FSC after refor-
mulating the earlier work of [GS92] in the framework
presented here. This provides further evidence that the
framework introduced herein is a useful one.
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